• Cigarette smoke-induced lung inflammation in COPD mediated via CCR1/JAK/STAT /NF-κB pathway

     

    Cigarette smoke-induced lung inflammation in COPD mediated via CCR1/JAK/STAT /NF-κB pathway


    Abstract

    Inflammation is an important cause of chronic obstructive pulmonary disease (COPD) and its acute exacerbation. However, the critical role of C-C chemokine receptor (CCR)1 in progression of cigarette smoke-induced chronic inflammation remains unclear. We studied CCR1 expression using immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction (RT-PCR) in COPD patients and controls. Cytokine levels in peripheral blood were measured by enzyme-linked immunosorbent assay (ELISA). In vitro, we investigated Janus kinase/signal transducers and activators of transcription (JAK/STAT)/nuclear factor-κB (NF-κB) signaling in cigarette smoke extract-induced or CCR1 deficiency/overexpressed mouse macrophage cell line MH-S by RT-PCR and western blot, and measured the cytokine levels in the supernatant with ELISA. We found that CCR1 expression was upregulated in COPD patients and there was a negative correlation between CCR1 mRNA levels and predicted % forced expiratory volume in 1 min. Inflammatory cytokine levels in the peripheral blood were higher in COPD patients than controls, and these were positively correlated with CCR1 levels. CCR1 was shown to play a critical role in regulating smoke-induced inflammation via JAK/STAT3/NF-κB signaling in vitro. CCR1 may play a critical role in airway inflammation in COPD. Additionally, understanding the molecular mechanism may help develop novel methods for the treatment of COPD.

     

    Introduction

    Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and concurrent progressive airflow limitation [13]. Patients may experience episodes of exacerbated respiratory symptoms, and the frequency of exacerbations requiring hospitalization increases, resulting in significant social and economic burden and one of the major causes of morbidity and mortality worldwide [45]. The pathogenesis of COPD and exacerbations may be associated with inflammatory cells, including macrophages, neutrophils, and T lymphocytes [67]. These cells are crucial in parenchymal destruction and development of airflow limitation in patients with COPD [89].

    Chemokines and their receptors regulate leukocyte adhesion and homing, and these receptors play a critical role in trafficking of leukocytes to sites of injury and inflammation [10]. In fact, the cell surface of T cells, natural killer cells, monocytes, macrophages, lymphocytes, and neutrophils express the C-C chemokine receptor (CCR)1 [11]. Previous studies have shown that elevated blood inflammation cells, chemokine levels, and CCR1 expression are associated with increased risk of exacerbations in patients with COPD [1216]. However, the critical role of CCR1 in the progression of cigarette smoke-induced chronic inflammation remains unclear. We therefore hypothesize that CCR1 enhances airway inflammation via regulation of Janus kinase/signal transducers and activators of transcription (JAK/STAT)/nuclear factor-κB (NF-κB) signaling.

    In this study, we aimed to assess CCR1 expression in peripheral blood and bronchial tissues of patients with COPD and participants who served as controls. Furthermore, we investigated chemokine levels in plasma and correlation with lung function and CCR1 expression. We also aimed to examine the inflammatory responses of MH-S cells that overexpressed or were deficient in CCR1 expression that were treated with cigarette smoke extract (CSE). https://www.aging-us.com/article/103180/text


    When public refer to contemporary medicine, accuracy plays one of the most significant roles and human lives are literally dependent on it. Hence, any researches pertaining to medicine are necessary to meet the highest standards. The problem today is that any results of researches can be published online and used as a reference without being adequately verified and approved. Mikhail (Misha) Blagosklonny of Oncotarget clearly understood this challenge and decided to create an alternative solution. That’s how a weekly oncology-focused research journal named “Oncotarget” has been established back in 2010. The major principle of this journal is based on Altmetric scores that are used as a quality indicator. That allows both readers and authors to validate publications with Altmetric Article Reports that provide “real-time feedback containing data summary related to a particular publication.” Oncotarget website demonstrates a complete publications list with respective scores above 100 as well as reports discussed above. Mikhail (Misha) Blagosklonny glad to share his new approach and hopes it creates the necessary help to anybody, who has interest in oncology.
    “A diagnostic autoantibody signature for primary cutaneous melanoma” has the Altmetric score of 594. This study was released back in 2018 by Oncotarget and written by various experts from Hollywood Private Hospital, Edith Cowan University, Dermatology Specialist Group, St. John of God Hospital and The University of Western Australia. The introduction of the study mentions that “recent data shows that Australians are four times more likely to develop a cancer of the skin than any other type of cancer”, and shares an insight on melanoma that “is curable by surgical excision in the majority of cases, if detected at an early stage.”
    The publication has got an Altmetric score of 594. Mikhail (Misha) Blagosklonny realizes that most of readers are aiming to understand the very meaning of it. Based on the Altmetric website, the score relates to “how many people have been exposed to and engaged with a scholarly output.” Hereby, the paper about melanoma, was utilized for citations in various news articles 69 times. Moreover, it was mentioned in 2 online blogs, as well as 25 Tweets on Twitter and 1 Facebook post. FOX23 of Tulsa, Oklahoma has headlined their news on July 20, 2018 as “New blood test could detect skin cancer early”, using the main content of Australia study 
    Another Oncotarget’s study with a top score of 476, is “Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moon-shot,”. This publication has appeared in 60 news stories, 1 online blog post and 6 Twitter posts. The majority of public may have seen a concise overview only, however those who visit Mikhail (Misha) Blagosklonny at Oncotarget, do get helpful scientific facts. Oncotarget is proud to have the ability to share with online readers this highly appreciated and top-quality information, that is trustworthy and reliable.
     

     


    votre commentaire
  • Construction of immune-related and prognostic lncRNA clusters and identification of their immune and genomic alterations characteristics in lung adenocarcinoma samples

     

    Construction of immune-related and prognostic lncRNA clusters and identification of their immune and genomic alterations characteristics in lung adenocarcinoma samples

     

    Abstract

    Long non-coding RNAs (lncRNAs) play an important role in various biological processes of lung adenocarcinoma (LUAD), such as immune response regulation, tumor microenvironment remodeling and genomic alteration. Nevertheless, immune-related lncRNAs and their immune and genomic alterations characteristics in LUAD samples still remain unreported. Here, using various public databases, statistic and software tools, we constructed two immune-related lncRNA clusters with different immune and genomic alterations characteristics. Notably, cluster 1 had a stronger immunosuppressive tumor microenvironment (TME) and a higher mutation frequency than cluster 2, especially the mutant genes, such as Kelch-like ECH-associated protein 1 (KEAP1) and toll like receptor 4 (TLR4). In cluster 1, both the amplified and deleted portions of copy number variation (CNV) segments were enriched and cyclin dependent kinase inhibitor 2A (CDKN2A) was significantly deleted. GSVA analysis revealed that these immune-related lncRNAs may be involved in stem cell and EMT functions. Furthermore, cluster 1 was related to worse prognosis of LUAD patients. Therefore, we constructed two immune-related and prognostic lncRNA clusters and identified their immune and genomic alterations characteristics in LUAD samples, which could well divide LUAD patients into different immune phenotypes and help to understand immune molecular mechanisms of LUAD.

     

    Introduction

    Lung adenocarcinoma (LUAD) is the most prevalent pathological subtype of non small cell lung cancer (NSCLC), which accounts for approximately 40% of lung cancer worldwide [12]. The average 5-year survival rate of patients with LUAD is only 18%, although comprehensive treatments such as surgery and targeted therapies have improved clinical therapies [3]. Recently, immunotherapy strategies have exhibited an unexpected antitumor effect in LUAD [45]. However, fewer patients respond to this therapy, and there is no clearly molecular stratification of the patients [67]. Thus, deeply understanding of immune molecular mechanisms and underlying subtypes of LUAD is of great significance for more effective treatment options.

    Long non-coding RNAs (lncRNAs) are non-coding RNAs without protein-coding capacity and are >200 nucleotides (nt) long [8]. LncRNA functions have been discovered in chromatin interactions, transcriptional regulation, RNA processing, mRNA stability or translation, and signal cascade regulation [914]. Increasing evidence shows that lncRNAs can regulate not only the innate immune response but also the more sophisticated adaptive immune response as well as immune cell development [1518]. Moreover, lncRNAs may be pivotal regulators in remodeling the tumor microenvironment (TME) [171920], which forms complex and heterogeneous environments consisting of multiple cells, such as infiltrating immune cells and stromal cells [21]. For instance, lnc-EGFR also acts as an immune-suppressor by promoting regulatory T cells differentiation in hepatocellular carcinoma [22]. NF-κB interacting NKILA (an lncRNA) enhances T cell sensitivity to activation-induced cell death by mechanically inhibiting NF-κB signaling [23]. Lymph node metastasis associated transcript 1 (LNMAT1), also a new lncRNA, is involved in the regulation of C-C motif chemokine ligand 2 (CCL2) recruiting macrophages into the tumor [24]. The involvement of lncRNAs in immune regulation is complicated, and many key immune regulatory lncRNAs have not yet been identified. Hence, it is urgent needed to identify new immune-related lncRNAs and elucidate their interactions with immune system in TME. https://www.aging-us.com/article/103251/text



    oncotarget acceptance rate
    When public mention today’s medicine, accuracy plays one of the most important roles and human lives are literally dependent on it. Hereby, any researches related to medicine are required to comply with the top standards. The challenge today is that any results of researches can be posted online and used as a reference without being adequately verified and approved. Mikhail (Misha) Blagosklonny of Oncotarget clearly understood this challenge and attempted to generate an alternative solution. That’s how a weekly oncology-focused research journal called “Oncotarget” has been founded back in 2010. The major principle of this journal is based on Altmetric scores that are used as a quality measure. That assists both readers and authors to quality-check publications with Altmetric Article Reports that create “real-time feedback containing data summary related to a particular publication.” Oncotarget website demonstrates a full publications list with corresponding scores higher than 100 as well as reports discussed above. Mikhail (Misha) Blagosklonny proud to share his new approach and hopes it creates the required help to anyone, who has interest in oncology.
    “A diagnostic autoantibody signature for primary cutaneous melanoma” has the Altmetric score of 594. This study was released back in 2018 by Oncotarget and written by diversified experts from Hollywood Private Hospital, Edith Cowan University, Dermatology Specialist Group, St. John of God Hospital and The University of Western Australia. The introduction of the study mentions that “recent data shows that Australians are four times more likely to develop a cancer of the skin than any other type of cancer”, and provides an insight on melanoma that “is curable by surgical excision in the majority of cases, if detected at an early stage.”
    The paper has got an Altmetric score of 594. Mikhail (Misha) Blagosklonny realizes that majority of readers are aiming to comprehend the very meaning of it. Based on the Altmetric website, the score indicates “how many people have been exposed to and engaged with a scholarly output.” Hereby, the article about melanoma, was utilized for citations in different news articles 69 times. Besides that, it was referred to in 2 online blogs, as well as 25 Tweets on Twitter and 1 Facebook post. FOX23 of Tulsa, Oklahoma has headlined their report on July 20, 2018 as “New blood test could detect skin cancer early”, using the main content of Australia study 
    Another Oncotarget’s research with a top score of 476, is “Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moon-shot,”. This study has appeared in 60 news stories, 1 online blog post and 6 Twitter posts. The majority of public may have come across a brief overview only, however those who visit Mikhail (Misha) Blagosklonny at Oncotarget, do receive useful scientific facts. Oncotarget is glad to have the ability to share with online readers this highly appreciated and top-quality information, that is trustworthy and reliable.
     
    Mikhail (Misha) V. Blagosklonny graduated with an MD and PhD from First Pavlov State Medical University of St. Petersburg, Russia. Dr. Mikhail V. Blagosklonny has then immigrated to the United States, where he received the prestigious Fogarty Fellowship from the National Institutes of Health. During his fellowship in Leonard Neckers’ lab at the National Cancer Institute (NCI), he was a co-author of 18 publications on various biomedical themes, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1. He also was the last author for a clinical phase I/II trial article. 
    After authoring seven papers during a brief yet productive senior research fellowship in the El-Deiry Cancer Research Lab at the University of Pennsylvania, Dr. Blagosklonny returned to NCI to work with Tito Fojo. Together, they published 26 papers. Moreover, Dr. Blagosklonny published many of experimental research papers and theoretical papers as sole author. The abovementioned sole-author articles discussed two crucial topics. The first of these discussed selectively killing cancer cells with deregulated cell cycle or drug resistance via verifying their resistance. The outcomes and underlying notion were so revolutionary that they were incorrectly cited by other scientists as “reversal of resistance,” even though the publication was titled, “Exploiting of drug resistance instead of its reversal.” One big supporter of this concept was the world-famous scientist Arthur Pardee, with whom Dr. Blagosklonny co-authored a joint publication in 2001.
    The second theme throughout Dr. Blagosklonny’s sole-author articles is a research method to develop knowledge by bringing several facts together from seemingly irrelevant areas. This results in new notions with testable forecasts, which in turn can be “tested” via analyzing the literature further. Likewise, the concept was co-authored by Arthur Pardee in a 2002 article in Nature. The first success of the new research methodology was the description of the feedback regulation of p53, as confirmed by the discovery of mdm2/p53 loop; and the explanation why mutant p53 is always overexpressed, published in 1997. The most important result revealed by Dr. Blagosklonny’s research methodology is the hyperfunction (or quasi-programmed) theory of aging and the revelation of rapamycin as an exclusively well-tolerated anti-aging drug, published in 2006. As mentioned in Scientific American, Michael Hall, who discovered mTOR in 1991, gives Dr. Blagosklonny credit for “connecting dots that others can’t even see.”
    In 2002, Dr. Blagosklonny became associate professor of medicine at New York Medical College. He agreed to accept responsibilities as a senior scientist at Ordway Research Institute in Albany, New York, in 2005, before receiving another position at Roswell Park Cancer Institute as professor of oncology in 2009.
    Since coming to Roswell Park Comprehensive Cancer Center in 2009, Dr. Blagosklonny has studied the prevention of cancer (an age-related disease) via stopping organism aging - in other words, “preventing cancer via staying young.” His laboratory closely worked together with Andrei Gudkov’s and conducted research on the suppression of cellular senescence, namely suppression of cellular conversion from healthy quiescence to permanent senescence. This led to the discovery of additional anti-aging medicines beyond rapamycin. The cell culture studies were complemented by studies in mice, including several models like normal and aging mice, p53-deficient mice, and mice on a high-fat diet.
    Dr. Blagosklonny has also published extensively on the stoppage of cellular senescence via rapamycin and other mTOR inhibitors, life extension and cancer stoppage in mice, and combinations of anti-aging medicines to be taken by humans. A rapamycin-based combination of seven clinically available medications has been named the “Koschei Formula” and is now used for the treatment of aging in patients at the Alan Green Clinic in Little Neck, New York. 
     

     

    Comments

     

    votre commentaire
  • Dysregulation of antimicrobial peptide expression distinguishes Alzheimer’s disease from normal aging

     

    Dysregulation of antimicrobial peptide expression distinguishes Alzheimer’s disease from normal aging



    Abstract

    Alzheimer's disease (AD) is an age-related neurodegenerative disease with unknown mechanism that is characterized by the aggregation of abnormal proteins and dysfunction of immune responses. In this study, an integrative approach employing in silico analysis and wet-lab experiment was conducted to estimate the degrees of innate immune system relevant gene expression, neurotoxic Aβ42 generation and neuronal apoptosis in normal Drosophila melanogaster and a transgenic model of AD. Results demonstrated mRNA levels of antimicrobial peptide (AMP) genes gradually increased with age in wild-type flies, while which exhibited a trend for an initial decrease followed by subsequent increase during aging in the AD group. Time series and correlation analysis illustrated indicated a potential relationship between variation in AMP expression and Aβ42 concentration. In conclusion, our study provides evidence for abnormal gene expression of AMPs in AD flies with age, which is distinct from the expression profiles in the normal aging process. Aberrant AMP expression may participate in the onset and development of AD by inducing or accelerating Aβ deposition. These findings suggest that AMPs may serve as potential diagnostic biomarkers and therapeutic targets. However, further studies are required to elucidate the pathological effects and underlying mechanisms of AMP dysregulation in AD progression.

     

    Introduction

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects a growing proportion of the aging population. Patients with AD manifest with gradual decline of cognitive and functional abilities and shortened lifespan [1]. Due to the complex and multifactorial nature of AD, the etiology of which remains poorly understood, effective interventional means for prevention and treatment are lacking [23]. There is growing recognition that the pathological mechanisms underlying AD do not only involve the aggregation of abnormal proteins, such as amyloid beta peptide (Aβ) and tau, but also include dysfunction of immune responses in the brain [4]. Since there is a lack of adaptive immune system in human brains under normal circumstances, impaired innate immune function has been proposed to be a key mechanism in the initiation and progression of AD [5]. Although the innate immune system has been considered a potential therapeutic target and has drawn substantial attention in biological and pharmaceutical studies, it is still disputed whether innate immunity is increased or decreased in AD [67].

    Animal models are indispensable tools to investigate pathological mechanisms and intervention strategies for AD. Over the past few decades, many studies have been conducted in Drosophila melanogaster to gain insight into the pathophysiological processes underpinning AD, identify potentially important genes and biomarkers, and screen new drug candidates. Besides the well-known advantages of using Drosophila as a model species [8], the host defense of the fruit fly rests entirely within its complex innate immune system, which makes it a desirable model for research on innate immunity in AD [9].

    Aging is generally regarded as the most important risk factor for AD. However, the effects of aging on innate immunity in Drosophila have not been fully elucidated. Therefore, we performed a comprehensive data mining of the published expressional profiles [1023] and experimental study at the transcriptomic level to analyze the expression profiles of innate immunity genes in wild-type (WT) and Aβ transgenic Drosophila model during aging. The transcriptional levels of major differentially expressed genes, Aβ deposition, and neuronal apoptosis in the head of both control and AD flies were also assessed to evaluate the effects of dysregulation of innate immunity on disease progression. https://www.aging-us.com/article/102650/text


    oncotarget impact factor 2021 Zoya Demidenko Dr. Zoya N. Demidenko Zoya N. Demidenko , Ph.D. is Executive Manager of the Oncotarget journal . Oncotarget publishes high-impact research papers of general interest and outstanding significance and novelty in all areas of biology and medicine: in translational, basic and clinical research including but not limited to cancer research, oncogenes, oncoproteins and tumor suppressors, signaling pathways as potential targets for therapeutic intervention, shared targets in different diseases (cancer, benign tumors, atherosclerosis, eukaryotic infections, metabolic syndrome and other age-related diseases), chemotherapy, and new therapeutic strategies. After earning her Ph.D. in molecular biology, Zoya was awarded a Fogarty post-doctoral Fellowship from the National Institutes of Health in Bethesda, MD. After successful completion of post-doctoral training, she continued her professional career at George Washington University and Albert Einstein School of Medicine . In 2005 she cofounded the startup company Oncotarget Inc. which is focused on the development of anti-aging and anti-cancer drugs. Her research interests include signal transduction, cell cycle and cellular senescence, and their pharmacological targeting. In 2009 she cofounded the publishing house Impact Journals which specializes in publishing scientific journals. In 2011 she was selected to be a Member of the National Association of Professional Women .
     
    Mikhail (Misha) V. Blagosklonny graduated with an MD and PhD from First Pavlov State Medical University of St. Petersburg, Russia. Dr. Mikhail V. Blagosklonny has then immigrated to the United States, where he received the prestigious Fogarty Fellowship from the National Institutes of Health. During his fellowship in Leonard Neckers’ lab at the National Cancer Institute (NCI), he was a co-author of 18 publications on various biomedical themes, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1. He also was the last author for a clinical phase I/II trial article. 
    After authoring seven papers during a brief yet productive senior research fellowship in the El-Deiry Cancer Research Lab at the University of Pennsylvania, Dr. Blagosklonny returned to NCI to work with Tito Fojo. Together, they published 26 papers. Moreover, Dr. Blagosklonny published many of experimental research papers and theoretical papers as sole author. The abovementioned sole-author articles discussed two crucial topics. The first of these discussed selectively killing cancer cells with deregulated cell cycle or drug resistance via verifying their resistance. The outcomes and underlying notion were so revolutionary that they were incorrectly cited by other scientists as “reversal of resistance,” even though the publication was titled, “Exploiting of drug resistance instead of its reversal.” One big supporter of this concept was the world-famous scientist Arthur Pardee, with whom Dr. Blagosklonny co-authored a joint publication in 2001.
    The second theme throughout Dr. Blagosklonny’s sole-author articles is a research method to develop knowledge by bringing several facts together from seemingly irrelevant areas. This results in new notions with testable forecasts, which in turn can be “tested” via analyzing the literature further. Likewise, the concept was co-authored by Arthur Pardee in a 2002 article in Nature. The first success of the new research methodology was the description of the feedback regulation of p53, as confirmed by the discovery of mdm2/p53 loop; and the explanation why mutant p53 is always overexpressed, published in 1997. The most important result revealed by Dr. Blagosklonny’s research methodology is the hyperfunction (or quasi-programmed) theory of aging and the revelation of rapamycin as an exclusively well-tolerated anti-aging drug, published in 2006. As mentioned in Scientific American, Michael Hall, who discovered mTOR in 1991, gives Dr. Blagosklonny credit for “connecting dots that others can’t even see.”
    In 2002, Dr. Blagosklonny became associate professor of medicine at New York Medical College. He agreed to accept responsibilities as a senior scientist at Ordway Research Institute in Albany, New York, in 2005, before receiving another position at Roswell Park Cancer Institute as professor of oncology in 2009.
    Since coming to Roswell Park Comprehensive Cancer Center in 2009, Dr. Blagosklonny has studied the prevention of cancer (an age-related disease) via stopping organism aging - in other words, “preventing cancer via staying young.” His laboratory closely worked together with Andrei Gudkov’s and conducted research on the suppression of cellular senescence, namely suppression of cellular conversion from healthy quiescence to permanent senescence. This led to the discovery of additional anti-aging medicines beyond rapamycin. The cell culture studies were complemented by studies in mice, including several models like normal and aging mice, p53-deficient mice, and mice on a high-fat diet.
    Dr. Blagosklonny has also published extensively on the stoppage of cellular senescence via rapamycin and other mTOR inhibitors, life extension and cancer stoppage in mice, and combinations of anti-aging medicines to be taken by humans. A rapamycin-based combination of seven clinically available medications has been named the “Koschei Formula” and is now used for the treatment of aging in patients at the Alan Green Clinic in Little Neck, New York. 
     

     


    votre commentaire
  • Methylation of CHFR sensitizes esophageal squamous cell cancer to docetaxel and paclitaxel

     
    Methylation of CHFR sensitizes esophageal squamous cell cancer to docetaxel and paclitaxel

    Issue 1-2, January 2015

    ABSTRACT

    Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide. Both genetic and epigenetic changes are involved in esophageal carcinogenesis. CHFR methylation has been found frequently in different cancers and is regarded as a marker of taxane sensitivity. CHFR methylation was found in 0% (0/16) of normal mucosa, 2.9% (1/34) of grade I dysplasia, 0% (0/8) of grade II dysplasia, 12.5% (1/8) of grade III dysplasia and 45% (49/109) of invasive cancer. When treated with docetaxel or paclitaxel, cell viability was lower in CHFR methylated esophageal cancer cells than in unmethylated cells (p<0.05). No difference was found with either cisplatin or VP16 treatment in either group (p>0.05). In CHFR methylated cells, treatment with docetaxel or paclitaxel resulted in almost all cells being suspended in G0/G1 phase of the cell cycle. After 5-AZ treatment, there was an increased fraction of CHFR-methylated cells in S and G2/M phases (p<0.05). In conclusion, CHFR is frequently methylated in ESCC and the expression of CHFR is regulated by promoter region methylation. CHFR methylation is a late stage event in ESCC. Methylation of CHFR sensitized ESCC cells to taxanes. 5-AZ may re-sensitize chemotherapy resistant in refractory tumors by inducing cell cycle phase re-distribution. http://www.impactjournals.com/Genes&Cancer/index.php?abs=46


    oncotarget predatory Zoya Demidenko Dr. Zoya N. Demidenko Zoya N. Demidenko , Ph.D. is Executive Manager of the Oncotarget journal . Oncotarget publishes high-impact research papers of general interest and outstanding significance and novelty in all areas of biology and medicine: in translational, basic and clinical research including but not limited to cancer research, oncogenes, oncoproteins and tumor suppressors, signaling pathways as potential targets for therapeutic intervention, shared targets in different diseases (cancer, benign tumors, atherosclerosis, eukaryotic infections, metabolic syndrome and other age-related diseases), chemotherapy, and new therapeutic strategies. After earning her Ph.D. in molecular biology, Zoya was awarded a Fogarty post-doctoral Fellowship from the National Institutes of Health in Bethesda, MD. After successful completion of post-doctoral training, she continued her professional career at George Washington University and Albert Einstein School of Medicine . In 2005 she cofounded the startup company Oncotarget Inc. which is focused on the development of anti-aging and anti-cancer drugs. Her research interests include signal transduction, cell cycle and cellular senescence, and their pharmacological targeting. In 2009 she cofounded the publishing house Impact Journals which specializes in publishing scientific journals. In 2011 she was selected to be a Member of the National Association of Professional Women .
     
    Mikhail (Misha) V. Blagosklonny graduated with an MD and PhD from First Pavlov State Medical University of St. Petersburg, Russia. Dr. Mikhail V. Blagosklonny has then immigrated to the United States, where he received the prestigious Fogarty Fellowship from the National Institutes of Health. During his fellowship in Leonard Neckers’ lab at the National Cancer Institute (NCI), he was a co-author of 18 publications on various biomedical themes, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1. He also was the last author for a clinical phase I/II trial article. 
    After authoring seven papers during a brief yet productive senior research fellowship in the El-Deiry Cancer Research Lab at the University of Pennsylvania, Dr. Blagosklonny returned to NCI to work with Tito Fojo. Together, they published 26 papers. Moreover, Dr. Blagosklonny published many of experimental research papers and theoretical papers as sole author. The abovementioned sole-author articles discussed two crucial topics. The first of these discussed selectively killing cancer cells with deregulated cell cycle or drug resistance via verifying their resistance. The outcomes and underlying notion were so revolutionary that they were incorrectly cited by other scientists as “reversal of resistance,” even though the publication was titled, “Exploiting of drug resistance instead of its reversal.” One big supporter of this concept was the world-famous scientist Arthur Pardee, with whom Dr. Blagosklonny co-authored a joint publication in 2001.
    The second theme throughout Dr. Blagosklonny’s sole-author articles is a research method to develop knowledge by bringing several facts together from seemingly irrelevant areas. This results in new notions with testable forecasts, which in turn can be “tested” via analyzing the literature further. Likewise, the concept was co-authored by Arthur Pardee in a 2002 article in Nature. The first success of the new research methodology was the description of the feedback regulation of p53, as confirmed by the discovery of mdm2/p53 loop; and the explanation why mutant p53 is always overexpressed, published in 1997. The most important result revealed by Dr. Blagosklonny’s research methodology is the hyperfunction (or quasi-programmed) theory of aging and the revelation of rapamycin as an exclusively well-tolerated anti-aging drug, published in 2006. As mentioned in Scientific American, Michael Hall, who discovered mTOR in 1991, gives Dr. Blagosklonny credit for “connecting dots that others can’t even see.”
    In 2002, Dr. Blagosklonny became associate professor of medicine at New York Medical College. He agreed to accept responsibilities as a senior scientist at Ordway Research Institute in Albany, New York, in 2005, before receiving another position at Roswell Park Cancer Institute as professor of oncology in 2009.
    Since coming to Roswell Park Comprehensive Cancer Center in 2009, Dr. Blagosklonny has studied the prevention of cancer (an age-related disease) via stopping organism aging - in other words, “preventing cancer via staying young.” His laboratory closely worked together with Andrei Gudkov’s and conducted research on the suppression of cellular senescence, namely suppression of cellular conversion from healthy quiescence to permanent senescence. This led to the discovery of additional anti-aging medicines beyond rapamycin. The cell culture studies were complemented by studies in mice, including several models like normal and aging mice, p53-deficient mice, and mice on a high-fat diet.
    Dr. Blagosklonny has also published extensively on the stoppage of cellular senescence via rapamycin and other mTOR inhibitors, life extension and cancer stoppage in mice, and combinations of anti-aging medicines to be taken by humans. A rapamycin-based combination of seven clinically available medications has been named the “Koschei Formula” and is now used for the treatment of aging in patients at the Alan Green Clinic in Little Neck, New York. 

    votre commentaire
  • Multiple myeloma cell lines and primary tumors proteome: protein biosynthesis and Immune system as potential therapeutic targets

     
    Multiple myeloma cell lines and primary tumors proteome: protein biosynthesis and Immune system as potential therapeutic targets

    Issue 11-12, November 2015

    ABSTRACT

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells’ (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines’ proteome and could confirm some patients’ findings.http://www.impactjournals.com/Genes&Cancer/index.php?abs=88


    When public mention modern medicine, precision plays one of the most significant roles and people’s lives are directly dependent on it. Hence, any researches related to medicine are required to meet the top standards. The problem nowadays is that any outcomes of researches can be posted online and used as a reference without being properly checked and approved. Mikhail (Misha) Blagosklonny of Oncotarget clearly understood this issue and tried to generate an alternative solution. That’s how a weekly oncology-focused research journal called “Oncotarget” has been established back in 2010. The main principle of this journal is related to Altmetric scores that are used as a quality measure. That helps both readers and authors to validate publications with Altmetric Article Reports that create “real-time feedback containing data summary related to a particular publication.” Oncotarget website demonstrates a full publications list with respective scores higher than 100 as well as reports mentioned above. Mikhail (Misha) Blagosklonny proud to share his new approach and hopes it creates the required help to anybody, who has interest in oncology.
    “A diagnostic autoantibody signature for primary cutaneous melanoma” has the Altmetric score of 594. This paper was published back in 2018 by Oncotarget and completed by different experts from Hollywood Private Hospital, Edith Cowan University, Dermatology Specialist Group, St. John of God Hospital and The University of Western Australia. The introduction of the study mentions that “recent data shows that Australians are four times more likely to develop a cancer of the skin than any other type of cancer”, and shares an insight on melanoma that “is curable by surgical excision in the majority of cases, if detected at an early stage.”
    The paper has got an Altmetric score of 594. Mikhail (Misha) Blagosklonny realizes that majority of readers are aiming to understand the very meaning of it. Based on the Altmetric website, the score indicates “how many people have been exposed to and engaged with a scholarly output.” Hence, the paper about melanoma, was used for citations in different news articles 69 times. In addition, it was quoted in 2 online blogs, as well as 25 Tweets on Twitter and 1 Facebook post. FOX23 of Tulsa, Oklahoma has headlined their news on July 20, 2018 as “New blood test could detect skin cancer early”, using the main content of Australia study 
    Another Oncotarget’s research with a top score of 476, is “Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moon-shot,”. This research has appeared in 60 news stories, 1 online blog post and 6 Twitter posts. The majority of public may have seen a brief overview only, however those who visit Mikhail (Misha) Blagosklonny at Oncotarget, do get helpful scientific facts. Oncotarget is glad to have the chance to share with online viewers this highly appreciated and top-quality information, that is trustworthy and reliable.
     
    When public speak of today’s medicine, precision plays one of the most crucial roles and human lives are directly dependent on it. Hence, any researches pertaining to medicine are required to comply with the top standards. The problem today is that any results of researches can be posted online and used as a reference without being adequately checked and approved. Mikhail (Misha) Blagosklonny of Oncotarget perfectly understood this problem and attempted to generate an alternative solution. That’s how a weekly oncology-focused research journal named “Oncotarget” has been established back in 2010. The main principle of this journal is based on Altmetric scores that are used as a quality measure. That allows both readers and authors to validate publications with Altmetric Article Reports that create “real-time feedback containing data summary related to a particular publication.” Oncotarget website provides a complete publications list with respective scores above 100 as well as reports discussed previously. Mikhail (Misha) Blagosklonny proud to share his new approach and hopes it provides the required help to anybody, who has interest in oncology.
    “A diagnostic autoantibody signature for primary cutaneous melanoma” has the Altmetric score of 594. This paper was released back in 2018 by Oncotarget and written by several experts from Hollywood Private Hospital, Edith Cowan University, Dermatology Specialist Group, St. John of God Hospital and The University of Western Australia. The introduction of the study discusses “recent data shows that Australians are four times more likely to develop a cancer of the skin than any other type of cancer”, and provides an insight on melanoma that “is curable by surgical excision in the majority of cases, if detected at an early stage.”
    The paper has got an Altmetric score of 594. Mikhail (Misha) Blagosklonny realizes that majority of readers are willing to comprehend the very meaning of it. Based on the Altmetric website, the score relates to “how many people have been exposed to and engaged with a scholarly output.” Hereby, the paper about melanoma, was used for citations in various news articles 69 times. In addition, it was quoted in 2 online blogs, as well as 25 Tweets on Twitter and 1 Facebook post. FOX23 of Tulsa, Oklahoma has headlined their news on July 20, 2018 as “New blood test could detect skin cancer early”, using the main content of Australia study 
    Another Oncotarget’s research with a top score of 476, is “Biomarkers for early diagnosis of malignant mesothelioma: Do we need another moon-shot,”. This publication has appeared in 60 news stories, 1 online blog post and 6 Twitter posts. The majority of public may have come across a concise overview only, however those who visit Mikhail (Misha) Blagosklonny at Oncotarget, do receive helpful scientific facts. Oncotarget is happy to have the chance to share with online readers this highly appreciated and high-quality information, that is trustworthy and reliable.
     

     


    1 commentaire